
3
CHAPTER

Processes

Practice Exercises

3.1 Using the program shown in Figure 3.30, explain what the output will
be at LINE A.

#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>

int value = 5;

int main()
{
pid t pid;

pid = fork();

if (pid == 0) { /* child process */
value += 15;
return 0;

}
else if (pid > 0) { /* parent process */

wait(NULL);
printf("PARENT: value = %d",value); /* LINE A */
return 0;

}
}

Figure 3.30 What output will be at Line A?

109



110 Chapter 3 Processes

Answer:
The result is still 5, as the child updates its copy of value. When control
returns to the parent, its value remains at 5.

3.2 Including the initial parent process, how many processes are created by
the program shown in Figure 3.31?

Answer:
Eight processes are created.

3.3 Original versions of Apple’s mobile iOS operating system provided no
means of concurrent processing. Discuss three major complications that
concurrent processing adds to an operating system.

Answer:

a. The CPU scheduler must be aware of the different concurrent pro-
cesses and must choose an appropriate algorithm that schedules
the concurrent processes.

b. Concurrent processes may need to communicate with one another,
and the operating system must therefore develop one or more
methods for providing interprocess communication.

c. Because mobile devices often have limited memory, a process that
manages memory poorly will have an overall negative impact on
other concurrent processes. The operating system must therefore
manage memory to support multiple concurrent processes.

3.4 Some computer systems provide multiple register sets. Describe what
happens when a context switch occurs if the new context is already
loaded into one of the register sets. What happens if the new context
is in memory rather than in a register set and all the register sets are in
use?

Answer:
The CPU current-register-set pointer is changed to point to the set con-
taining the new context, which takes very little time. If the context is
in memory, one of the contexts in a register set must be chosen and be
moved to memory, and the new context must be loaded from memory
into the set. This process takes a little more time than on systems with
one set of registers, depending on how a replacement victim is selected.

3.5 When aprocess creates a newprocess using the fork() operation,which
of the following states is shared between the parent process and the child
process?

a. Stack

b. Heap

c. Shared memory segments

Answer:
Only the shared memory segments are shared between the parent pro-
cess and the newly forked child process. Copies of the stack and the heap
are made for the newly created process.

3.6 Consider the “exactly once”semantic with respect to the RPCmechanism.
Does the algorithm for implementing this semantic execute correctly



Practice Exercises 111

even if the ACK message sent back to the client is lost due to a net-
work problem?Describe the sequence of messages, and discuss whether
“exactly once” is still preserved.

Answer:
The “exactly once” semantics ensure that a remore procedure will be
executed exactly once and only once. The general algorithm for ensur-
ing this combines an acknowledgment (ACK) scheme combined with
timestamps (or some other incremental counter that allows the server
to distinguish between duplicate messages).

The general strategy is for the client to send the RPC to the server
along with a timestamp. The client will also start a timeout clock. The
client will thenwait for one of two occurrences: (1) it will receive an ACK

from the server indicating that the remote procedure was performed,
or (2) it will time out. If the client times out, it assumes the server was
unable to perform the remote procedure, so the client invokes the RPC a
second time, sending a later timestamp. The client may not receive the
ACK for one of two reasons: (1) the original RPC was never received by
the server, or (2) the RPC was correctly received—and performed—by
the server but the ACK was lost. In situation (1), the use of ACKs allows
the server ultimately to receive and perform the RPC. In situation (2),
the server will receive a duplicate RPC, and it will use the timestamp to
identify it as a duplicate so as not to perform the RPC a second time. It
is important to note that the server must send a second ACK back to the
client to inform the client the RPC has been performed.

3.7 Assume that a distributed system is susceptible to server failure. What
mechanismswould be required to guarantee the “exactly once” semantic
for execution of RPCs?

Answer:
The server should keep track in stable storage (such as a disk log)
of information regarding what RPC operations were received, whether
they were successfully performed, and the results associated with the
operations. When a server crash takes place and an RPC message is
received, the server can check whether the RPC has been previously
performed and therefore guarantee “exactly once” semantics for the
execution of RPCs.



112 Chapter 3 Processes

#include <stdio.h>
#include <unistd.h>

int main()
{

/* fork a child process */
fork();

/* fork another child process */
fork();

/* and fork another */
fork();

return 0;
}

Figure 3.31 How many processes are created?


	Processes
	Exercises


